
Making SAS Talk To Excel

Jack Hamilton

Kaiser Foundation Health Plan

Oakland, California

jack.hamilton@kp.org

jfh@alumni.stanford.org

Overview
• I plan to give a general discussion of the

ExcelXP tagset, followed by a "cookbook"
showing how to achieve various effects.

• There will be a few technical diversions,
but in general this presentation is aimed at
teaching by example, not theory.

• I don't expect you to remember the code.
You can look that up. Just remember
what you can do.

What do I mean by SAS?

• SAS 9.1.3.

What do I mean by Excel?

• Microsoft Excel XP, 2003, maybe some
others I don't have around to test.

• OpenOffice.org 2.0 (not extensively tested,
but I know that not everything works)

• Not Excel 5.

• Not, at the moment, Google spreadsheets.
Maybe someday.

What do I mean by “talk”?

• I mean "create a file that Excel can open
without having to do anything special, that
will look like a regular Excel workbook,
and that uses spreadsheet features such
as formatting."

Why do you need to do this?

• Maybe you don't.

• But many organizations, from single-
proprietor consultants to huge multi-
national corporations, use Excel, or an
equivalent, to work with sets of numbers.
Google "What We Know About
Spreadsheet Errors" for some numbers.

Why do you need to do this?

• If you have SAS, there's a good chance
you will want to get numbers from SAS
into Excel without a lot of fuss and bother.

• Excel is a good way to present data, but
don't use it for statistics. Or programming.
See the above-mentioned paper about
spreadsheet errors. The chances that
your manually-created spreadsheet has an
error are very high.

Why do you need to do this?

• Use SAS to create your numbers in a
structured, documented way (what SAS is
good at), and use Excel to display the
results to a wider audience (what Excel is
good at).

• The ExcelXP tagset lets you create and
distribute Excel reports with a minimum of
human intervention.

What are some alternatives?

• The traditional approach was to create a
flat file, with fixed columns or comma
separated values, and use the Excel
import wizard to read it in.

• This has worked for a very long time.

• You don't get any kind of formatting, and
you get one worksheet, and it's a manual
process.

What are some alternatives?

• Another alternative, in more recent
versions of SAS, is PROC EXPORT. It's
worth studying, but it is not as flexible as
the ExcelXP tagset.

What are some alternatives?

• The SAS Business Intelligence product
offers an Excel add-in that talks to a
server. It looks good, but I haven't tried it.
Also, it seems to require user interaction –
it's a pull solution, not a push solution –
and that might not meet your needs.

• There’s also the MSOffice2K tagset, which
offers a different set of options.

What are some alternatives?

• Some SAS products running under
Windows can create Excel worksheets.
For example, SAS for Windows and
Enterprise Guide. The problem with all of
those solutions is that they require either a
Windows SAS license or some kind of
server licensing. ExcelXP requires only
base SAS, and it doesn't have to be on
Windows.

What are some alternatives?

• Several years ago, I wrote a tagset that
creates SYLK files. It’s primitive, but if by
some chance you want to import into
Lotus 1-2-3 for DOS it might be the way to
go.

What do I mean by Tagset?

• A tagset is a way to define data markup in
SAS.

• "Markup" is a structured way to express
logical and display characteristics of data.
HTML is one type of markup you're
probably familiar with.

• Other examples of markup are Adobe PDF
and RTF.

Some technical details

• Tagsets are created by PROC TEMPLATE
and invoked by the Output Delivery
System. There's a special tagset
language.

• Tagsets are compiled and can be stored
permanently, just like formats and
compiled macros.

Some technical details

• You can create your own tagsets, or
modify existing ones.

• You don't need to know anything about
this unless you want to further customize
your output. In the case of the ExcelXP
tagset, lots of options are built in, so you
probably won't need to customize it.

But Is It Really Excel?

• No

• It's XML (Extensible Markup Language),
which recent versions of Excel know how
to read. Other programs can read it too,
such as OpenOffice.org.

• Because it's not really Excel, you should
save it in native Excel format before
sending it to someone who might not have
a recent version of Excel.

A simple example

ods tagsets.excelxp

file='ex1.xls';

proc print data=sashelp.class;

run;

ods tagsets.excelxp close;

A simple example

Making the ExcelXP tagset

available
• It's unlikely that you have the latest version

of the tagset available by default – it
doesn't follow the same release schedule
as base SAS. You can:

• Download the source once, save it,
compile it, and save the results in a
permanent location, or

Making the ExcelXP tagset

available
• Download the source once, save it, and

compile it in each job, or

• Download the source from the web and
compile it in each job.

Making the ExcelXP tagset

available
• The source can be found at

http://support.sas.com:80/rnd/

base/topics/odsmarkup/

excltags.tpl

• Compiled versions are not distributed.

Making the ExcelXP tagset

available
• To download and compile it each time, use

this code:

filename tagset http

"http://support.sas.com:80/

rnd/base/topics/odsmarkup/

excltags.tpl";

%include tagset / nosource2;

filename tagset clear;

• You must have an internet connection for
this to work.

Making the ExcelXP tagset

available
• Explaining how to save the compiled

version is beyond the scope of this
presentation. Ask your local SAS guru.

Using the ExcelXP tagset

• Use an ODS statement to open a tagset
for output. The first time, specify FILE=.

• Each subsequent ODS statement which
applies to the same workbook should not
specify FILE=.

• One or more worksheets will be written for
each proc or data step which creates
output.

Using the ExcelXP tagset

• When finished, close the tagset.

Styles

• The ExcelXP tagset will use ODS styles to
format your output. There are lots of
prefined styles, or you can roll your own.

• Don't get carried away with lots of different
fonts and colors.

• The default's not bad.

• Many procedures let you specify the style
of individual elements.

The barrettsblue style

The fancyprinter style

ExcelXP Options

• The ExcelXP tagset accepts a number of
options, which affect how cells, rows, and
columns appear, when new worksheets
are created, and how the print output
looks, and a few miscellaneous items.

• ods tagsets.excelxp options(…)

The first option you'll want to use

• ods tagsets.excelxp

options(doc='help')

file='ex2.xls';

proc print data=sashelp.class;

run;

ods tagsets.excelxp close;

The first option you'll want to use

367 ods tagsets.excelxp options(doc='help')
file='ex4.xls';

NOTE: Writing TAGSETS.EXCELXP Body file: ex4.xls

==
====================

The EXCELXP Tagset Help Text.

This Tagset/Destination creates Microsoft's spreadsheetML
XML.

It is used specifically for importing data into Excel.

Each table will be placed in its own worksheet within a
workbook.

This destination supports ODS styles, traffic lighting,
and custom formats

Options affecting columns

These are what I use most often.

Your mileage may vary.

• autofilter

• width_fudge

• absolute_column_width

• frozen_headers

Autofilter

• ods tagsets.excelxp

options(autofilter='all')

file='ex5.xls';

• ods tagsets.excelxp

options(autofilter='2-4')

file='ex6.xls';

Autofilter='all'

Autofilter='2-4'

A diversion – Errors

• Suppose you tried this:

ods tagsets.excelxp

options(autofilter='2,4')

file='ex7.xls';

• This isn't valid, but the tagset doesn't
detect that. It passes the erroneous
specification into the XML, and you'll get a
mysterious message when you try to open
the file.

The Mysterious Error Message

• These errors can be hard to track down,
so until you're accustomed to using the
tagset, add features one at a time and test
after every change.

Width_fudge

options(width_fudge='1')

Absolute_column_width

Options=(

absolute_column_width='5,10,5,5,5,5'

autofilter='2-4')

Frozen_headers

options(frozen_headers='1')

Options affecting rows

options(frozen_rowheaders='1')

You can, and often will, specify both
frozen_headers and frozen_rowheaders.

Worksheet and Print options

Worksheet

• Sheet_name

• Embedded_titles

Print

• Orientation

• Print_header / Print_footer

• Column_repeat / Row_repeat

Sheet_name

• This establishes the name of the current
sheet. I almost always use it. The good
folks at SAS have spend a lot of time
trying to create a good algorithm for
automatic sheet names, but I like my own
better.

• Also look at the option Sheet_label.

Sheet_name

options(sheet_name='Class data')

Reusing sheet names
ExcelXP remembers options, so you'll want to

specify a new sheet name for each procedure call.

Two identical calls to PROC PRINT:

Orientation

• The results of this option are visible only when

you print (or print preview the Excel workbook.

Each sheet in a multiple sheet workbook can

have a different orientation.

• The default orientation is Portrait, so you'll have

to specify this option only if you want to use

landscape, or earlier specified landscape and

want to switch back to portrait.

options(orientation='landscape')

Orientation

Embedded_titles

• As you saw in the previous example, the
system title appears on the sheet when
printed. If you also want it to appear in the
normal view, use:

• options(embedded_titles='yes')

• If you use this option, you will probably
want to expand freeze_headers as well.

Embedded_titles

title 'Making SAS Talk to Excel';

proc print data=sashelp.class;

run;

Print_header / Print_footer

• This gives you complete control over the
Excel page headers and footers. It uses
the same syntax as Excel – it is just
passed through. This is passed as XML,
so you'll need to use character entities for
special characters such as &.

• See the documentation for a very
complicated example.

Print_header / Print_footer

options(print_footer='&L&

;D&C&A&RPage &P

of &N')

Column_repeat / Row_repeat

• These options cause column and row
headers to repeat across pages. If you
have many rows or columns, you will
probably want to use these options (or one
of them).

• options(column_repeat='1'

row_repeat='1')

• Page size set to A6

Column_repeat / Row_repeat

Page breaks

Column_repeat / Row_repeat

Multiple worksheets

• By default, you'll get a new worksheet for
each procedure and each by-group within
a procedure (just as you would get new
pages in listing output).

• The interaction between procedures, by-
groups, pages, and sheet labels is
probably the most complicated aspect of
the ExcelXP tagset.

Multiple worksheets with BY-Groups

proc sort data=sashelp.class

out=classsex;

by sex;

run;

ods tagsets.excelxp

file='ex18.xls';

Multiple worksheets with BY-Groups

proc print data=classsex;

by sex;

run;

ods tagsets.excelxp close;

Multiple worksheets with BY-Groups

Multiple worksheets with PROC REPORT

proc report data=sashelp.class

nofs missing;

column sex name age

weight height;

define sex / order;

break after sex / page;

run;

Multiple worksheets with PROC REPORT

Multiple Sheet Titles

• You may have noticed that the sheet titles
weren't particularly satisfactory. This is a
topic of ongoing debate, and I expect
improvements in future releases.

• I usually run a separate proc step for each
BY value using a WHERE clause, and
specify the sheet_name option.

• This works for me because I have data
sets with a small number of known values
for my groups. It might not work for you.

An Alternative Way To Set Titles

• I created a modified version of the
ExcelXP tagset which obtains the sheet
titles from a macro variable. I then use
PROC REPORT to set the macro variable
whenever it creates a new page.

• I haven't included it here, but I will put in
the file I mail out.

• Not supported by SAS, not supported by
me.

Other Options

• There are numerous other options.

Explaining them would make me run over
my time limit Look at the documentation,
and read the ODS community forum found
through support.sas.com.

Mailing The Results

• I mail the results to myself if I am running
SAS under MVS (the same thing would
apply if I were running under Unix). This
saves me from having to do an FTP.

Mailing The Results

filename email email

attach=("ex19.xls")

to='jfh@alumni.stanford.org'

from='jfh@alumni.stanford.org'

subject='Excel test ';

data _null_;

file email;

put 'Results are attached.';

run;

Mailing The Results

Further Documentation

• http://support.sas.com/rnd/base/topics/
odsmarkup/excelxp_demo.html

• Contains some good examples, and
covers options I didn't discuss.

Further Documentation

• http://support.sas.com/rnd/base/topics/
odsmarkup/

• http://support.sas.com/rnd/base/topics/
odsmarkup/excelxp_demo.html

• Many SUGI papers can be found at
http://www.lexjansen.com/sugi/index.htm

