
1

Making SAS Talk To Excel

Jack Hamilton

Kaiser Foundation Health Plan

Oakland, California

jack.hamilton@kp.org

jfh@alumni.stanford.org

2

Overview
• I plan to give a general discussion of the

ExcelXP tagset, followed by a "cookbook"
showing how to achieve various effects.

• There will be a few technical diversions,
but in general this presentation is aimed at
teaching by example, not theory.

• I don't expect you to remember the code.
You can look that up. Just remember
what you can do.

3

What do I mean by SAS?

• SAS 9.1.3.

We'll see later how to get the latest version of the tagset if you're on 9.1.3.

The latest download of the ExcelXP tagset won't work with earlier versions of SAS.

If you're not current, use the version of ExcelXP that shipped with your system. You

may not have some features described here.

4

What do I mean by Excel?

• Microsoft Excel XP, 2003, maybe some

others I don't have around to test.

• OpenOffice.org 2.0 (not extensively tested,

but I know that not everything works)

• Not Excel 5.

• Not, at the moment, Google spreadsheets.
Maybe someday.

If you need to send the output to someone with an unknown version of SAS, save it

yourself in Excel. Save it as Excel, not XML.

OpenOffice.org compatibility means you can use the results on a Unix system, or on

a Windows or Maqc system without licensing Microsoft Office.

I have not tested this with Microsoft Works or AppleWorks.

5

What do I mean by “talk”?

• I mean "create a file that Excel can open

without having to do anything special, that

will look like a regular Excel workbook,

and that uses spreadsheet features such

as formatting."

There's no point in using ExcelXP if you're not going to use any Excel features. It

uses extra CPU time, and the resulting file is large. If all you want is data transfer,
and you have lots of data, you might want to stick with CSV.

6

Why do you need to do this?

• Maybe you don't.

• But many organizations, from single-

proprietor consultants to huge multi-

national corporations, use Excel, or an

equivalent, to work with sets of numbers.

Google "What We Know About

Spreadsheet Errors" for some numbers.

<http://panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm>

"Financial intelligence firm CODA reports that 95% of U.S. firms use spreadsheets

for financial reporting according to its experience (www.coda.com). "

7

Why do you need to do this?

• If you have SAS, there's a good chance
you will want to get numbers from SAS
into Excel without a lot of fuss and bother.

• Excel is a good way to present data, but
don't use it for statistics. Or programming.
See the above-mentioned paper about
spreadsheet errors. The chances that
your manually-created spreadsheet has an
error are very high.

From the paper quoted above:

"Since 1995, when field audits began to use good (although usually not excellent)

methodologies, 94% of the 88 spreadsheets audited in 7 studies have contained

errors, "

"about five percent of the spreadsheets they audited have very serious errors that

would have had major ramifications had they not been caught "

8

Why do you need to do this?

• Use SAS to create your numbers in a

structured, documented way (what SAS is

good at), and use Excel to display the

results to a wider audience (what Excel is

good at).

• The ExcelXP tagset lets you create and

distribute Excel reports with a minimum of

human intervention.

You don't want completely automatic distribution of reports - what if something went

wrong with the input data, and you have obviously wrong results even though the
program ran perfectly?

9

What are some alternatives?

• The traditional approach was to create a

flat file, with fixed columns or comma

separated values, and use the Excel

import wizard to read it in.

• This has worked for a very long time.

• You don't get any kind of formatting, and

you get one worksheet, and it's a manual

process.

If you do this a lot, you've probably automated it with a VBA script. You could do

everything described in this paper with VBA, and more, but this way is less work.

10

What are some alternatives?

• Another alternative, in more recent

versions of SAS, is PROC EXPORT. It's

worth studying, but it is not as flexible as

the ExcelXP tagset.

11

What are some alternatives?

• The SAS Business Intelligence product

offers an Excel add-in that talks to a

server. It looks good, but I haven't tried it.

Also, it seems to require user interaction –

it's a pull solution, not a push solution –
and that might not meet your needs.

• There’s also the MSOffice2K tagset, which

offers a different set of options.

I'm lazy - I want reports to appear in my Inbox; I don't want to have to remember to

chase them down every month.

MSOffice2K offers graphics, which is a big plus, but doesn't offer all the other

features of ExcelXP.

See also SUGI paper 035-31, Sur La Table: Creating Microsoft Excel PivotTables in
a Jiffy from SAS® Data by Ted Conway, based on work by Phil Mason.

See also SUGI paper 106-31, SAS® to Publishable Excel... Seamlessly – Using
ODS, XML, and Other Tricks by Harry Droogendyk, Stratia Consulting Inc., and

Marje Fecht, Prowerk Consulting Ltd.

12

What are some alternatives?

• Some SAS products running under

Windows can create Excel worksheets.

For example, SAS for Windows and

Enterprise Guide. The problem with all of

those solutions is that they require either a
Windows SAS license or some kind of

server licensing. ExcelXP requires only

base SAS, and it doesn't have to be on

Windows.

There's also an Excel ibname, but it requires a Windows server.

13

What are some alternatives?

• Several years ago, I wrote a tagset that

creates SYLK files. It’s primitive, but if by

some chance you want to import into

Lotus 1-2-3 for DOS it might be the way to

go.

It needs work. Don't use it unless you have to.

14

What do I mean by Tagset?

• A tagset is a way to define data markup in

SAS.

• "Markup" is a structured way to express

logical and display characteristics of data.

HTML is one type of markup you're

probably familiar with.

• Other examples of markup are Adobe PDF

and RTF.

15

Some technical details

• Tagsets are created by PROC TEMPLATE

and invoked by the Output Delivery

System. There's a special tagset

language.

• Tagsets are compiled and can be stored

permanently, just like formats and

compiled macros.

16

Some technical details

• You can create your own tagsets, or

modify existing ones.

• You don't need to know anything about

this unless you want to further customize

your output. In the case of the ExcelXP

tagset, lots of options are built in, so you

probably won't need to customize it.

17

But Is It Really Excel?

• No

• It's XML (Extensible Markup Language),

which recent versions of Excel know how

to read. Other programs can read it too,

such as OpenOffice.org.

• Because it's not really Excel, you should

save it in native Excel format before

sending it to someone who might not have

a recent version of Excel.

A future evrsion of Excel will use XML as its native format. That will help sell disk

drives.

Want more details? See

<http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnexcl2k2/html/odc_xmlss.asp>. That's a real hyphen in the line-break.

18

A simple example

ods tagsets.excelxp

file='ex1.xls';

proc print data=sashelp.class;

run;

ods tagsets.excelxp close;

The first statement tells SAS to start sending print output to the ODS destination

tagsets.ExcelXP, with the results stored in the physical file "ex1.xls".

The second statement just creates some output.

The third statement tells SAS you've finished sending output to ExcelXP, and closes
the file.

You might want to add the following statement after the first one:

ods listing close;

This tells SAS you don't want the old-style print output send to the LISTING or

SASLIST file.

19

A simple example

20

Making the ExcelXP tagset
available

• It's unlikely that you have the latest version

of the tagset available by default – it

doesn't follow the same release schedule

as base SAS. You can:

• Download the source once, save it,

compile it, and save the results in a

permanent location, or

21

Making the ExcelXP tagset
available

• Download the source once, save it, and

compile it in each job, or

• Download the source from the web and

compile it in each job.

22

Making the ExcelXP tagset
available

• The source can be found at

http://support.sas.com:80/rnd/

base/topics/odsmarkup/

excltags.tpl

• Compiled versions are not distributed.

23

Making the ExcelXP tagset
available

• To download and compile it each time, use

this code:

filename tagset http

"http://support.sas.com:80/

rnd/base/topics/odsmarkup/

excltags.tpl";

%include tagset / nosource2;

filename tagset clear;

• You must have an internet connection for

this to work.

24

Making the ExcelXP tagset
available

• Explaining how to save the compiled

version is beyond the scope of this

presentation. Ask your local SAS guru.

25

Using the ExcelXP tagset

• Use an ODS statement to open a tagset

for output. The first time, specify FILE=.

• Each subsequent ODS statement which

applies to the same workbook should not

specify FILE=.

• One or more worksheets will be written for

each proc or data step which creates

output.

FILE= can specify a SAS fileref or a quoted filename. On MVS, it can also specify a

DDname.

Other rules may apply on other platforms. I don't have a way to test these, but I

would guess that you can use a logical name on VMS or an environment variable

name on Unix.

26

Using the ExcelXP tagset

• When finished, close the tagset.

27

Styles

• The ExcelXP tagset will use ODS styles to

format your output. There are lots of

prefined styles, or you can roll your own.

• Don't get carried away with lots of different

fonts and colors.

• The default's not bad.

• Many procedures let you specify the style

of individual elements.

The program ShowAllStyles will create a workbook for each available style.

You can specify only one style per workbook - you can't use one style in one

worksheet and a different style in a different worksheet. You can, if you know how,

override all the style options.

28

The barrettsblue style

Perhaps a bit too busy

29

The fancyprinter style

Perhaps a bit too plain.

30

ExcelXP Options

• The ExcelXP tagset accepts a number of

options, which affect how cells, rows, and

columns appear, when new worksheets

are created, and how the print output

looks, and a few miscellaneous items.

• ods tagsets.excelxp options(…)

Options are cumulative. You can specify several options in one statement, or use a

separate statement for each option (not that that would be stylistically pleasing).

Nothing is written to the XML file until you actually "print" something.

31

The first option you'll want to use

• ods tagsets.excelxp

options(doc='help')

file='ex2.xls';

proc print data=sashelp.class;

run;

ods tagsets.excelxp close;

You have to print something before any option has an effect, even the DOC=

option.

32

The first option you'll want to use

367 ods tagsets.excelxp options(doc='help')
file='ex4.xls';

NOTE: Writing TAGSETS.EXCELXP Body file: ex4.xls

==
====================

The EXCELXP Tagset Help Text.

This Tagset/Destination creates Microsoft's spreadsheetML
XML.

It is used specifically for importing data into Excel.

Each table will be placed in its own worksheet within a
workbook.

This destination supports ODS styles, traffic lighting,
and custom formats

It's not pretty. You might want to import it into a word processor.

33

Options affecting columns

These are what I use most often.

Your mileage may vary.

• autofilter

• width_fudge

• absolute_column_width

• frozen_headers

34

Autofilter

• ods tagsets.excelxp

options(autofilter='all')

file='ex5.xls';

• ods tagsets.excelxp

options(autofilter='2-4')

file='ex6.xls';

Autofilters provide drop-down boxes allowing you to filter, or subset, your data.

These don't show up in OpenOffice.org. They should, so this will probably be fixed.

35

Autofilter='all'

This shows the effect of autofilter='all'

Note, by the way, that all is in quote marks. All option parameters require quotes.

Single or double doesn't matter, but you have to use one or the other.

By the way, if you misspell an option name, you won't get a warning message, it will
just be silently ignored.

36

Autofilter='2-4'

It's more likely that you will want to filter only a few columns, and you can use a

range to specify that.

The columns have to be contiguous.

Note, by the way, that the Sex column is a bit too narrow.

37

A diversion – Errors

• Suppose you tried this:

ods tagsets.excelxp

options(autofilter='2,4')

file='ex7.xls';

• This isn't valid, but the tagset doesn't

detect that. It passes the erroneous

specification into the XML, and you'll get a

mysterious message when you try to open

the file.

38

The Mysterious Error Message

• These errors can be hard to track down,

so until you're accustomed to using the

tagset, add features one at a time and test

after every change.

39

Width_fudge

options(width_fudge='1')

Sometimes all the columns are too narrow or two wide. Use the WIDTH_FUDGE

option to make them all wider or narrower by a constant factor. A number larger
than .75 will make the columns wider than the default, and a number below .75 will

make them narrower than the default.

40

Absolute_column_width

Options=(

absolute_column_width='5,10,5,5,5,5'

autofilter='2-4')

If some columns are too wide, some too narrow, and some just right, you can use

the ABSOLUTE_COLUMN_WIDTH option to specify the width of each column
individually.

The column width numbers are related to the final width of the column, but you will

have to play around to find the right value.

If you have more columns than width specifications, the width specifications are

reused.

Width specifications are remembered from sheet to sheet.

41

Frozen_headers

options(frozen_headers='1')

Frozen_rowheaders tells Excel how many rows to "freeze" at the top of the screen.

These rows will remain visible even if you scroll down in the data.

The frozen area is shown in Excel with a solid black line (indicated by the red

arrow). You can turn it on and off with Windows | Freeze Panes.

42

Options affecting rows

options(frozen_rowheaders='1')

You can, and often will, specify both
frozen_headers and frozen_rowheaders.

This specifies how many columns will be frozen at the left of the screen. Use this to

keep row headers visible when you scroll to the right.

43

Worksheet and Print options

Worksheet

• Sheet_name

• Embedded_titles

Print

• Orientation

• Print_header / Print_footer

• Column_repeat / Row_repeat

Worksheet options apply to a worksheet as a whole, rather than to specific rows or

columns.

Print options are seen only when the sheet is printed or previewed.

44

Sheet_name

• This establishes the name of the current

sheet. I almost always use it. The good

folks at SAS have spend a lot of time

trying to create a good algorithm for

automatic sheet names, but I like my own
better.

• Also look at the option Sheet_label.

45

Sheet_name

options(sheet_name='Class data')

The default, as seen above, was 'Table 1 - Data Set SASHELP.CLAS". Not very

satisfactory.

The sheet label is limited to 31 characters.

46

Reusing sheet names
ExcelXP remembers options, so you'll want to
specify a new sheet name for each procedure call.
Two identical calls to PROC PRINT:

Excel doesn't allow two worksheets to have the same name, so a "2" gets stuck on

the end of the second name.

Not terrible, but not especially satisfactory.

This workbook was created by just running the PROC PRINT twice.

47

Orientation

• The results of this option are visible only when
you print (or print preview the Excel workbook.
Each sheet in a multiple sheet workbook can

have a different orientation.

• The default orientation is Portrait, so you'll have
to specify this option only if you want to use
landscape, or earlier specified landscape and

want to switch back to portrait.

options(orientation='landscape')

48

Orientation

This shows the same data printed in portrait and in landscape. The SAS system

title appears at the top of the printed page as the page header. The default title is
shown.

The system footnote will also print, as the page footer. There is no default footnote,

so there is no page footer.

49

Embedded_titles

• As you saw in the previous example, the

system title appears on the sheet when

printed. If you also want it to appear in the

normal view, use:

• options(embedded_titles='yes')

• If you use this option, you will probably

want to expand freeze_headers as well.

options(embedded_titles='yes' freeze_headers='3' row_repeat='3')

50

Embedded_titles

title 'Making SAS Talk to Excel';

proc print data=sashelp.class;

run;

51

Print_header / Print_footer

• This gives you complete control over the

Excel page headers and footers. It uses

the same syntax as Excel – it is just

passed through. This is passed as XML,

so you'll need to use character entities for
special characters such as &.

• See the documentation for a very

complicated example.

Ampersands are required for Excel formatting - &C for center, etc.

52

Print_header / Print_footer

options(print_footer='&L&

;D&C&A&RPage &P

of &N')

If you view this after it gets to Excel, it has turned into

&L&D&C&A&RPage &P of &N

53

Column_repeat / Row_repeat

• These options cause column and row

headers to repeat across pages. If you

have many rows or columns, you will

probably want to use these options (or one

of them).

• options(column_repeat='1'

row_repeat='1')

• Page size set to A6

These apply to printed pages. Freeze_headers and freeze_rowheaders apply to

how worksheets are viewed in Excel. You will probably want to use both.

The example on the next page shows how page breaks would occur on A6 size

paper, which is fairly small - approximately postcard sized, or the standard size of

German toilet paper.

54

Column_repeat / Row_repeat

Page breaks

The lines show where the page breaks will be when the sheet is printed. This

worksheet will print on four pages.

By default, the pages will print down, then across. This can be changed with the

Page_order_across option.

55

Column_repeat / Row_repeat

This is the last printed page. It shows how row and column headings are printed on

every page when row_repeat and column_repeat are used.

56

Multiple worksheets

• By default, you'll get a new worksheet for

each procedure and each by-group within

a procedure (just as you would get new

pages in listing output).

• The interaction between procedures, by-

groups, pages, and sheet labels is

probably the most complicated aspect of

the ExcelXP tagset.

It's complicated, and I'm not going to try to explain it here.

But I'll give you a clue - look at the Sheet_interval option, and at the STARTPAGE

ODS option.

There's a limit to the number of worksheets you can create, but it's large - probably
more than you can keep track of in your head.

57

Multiple worksheets with BY-Groups

proc sort data=sashelp.class

out=classsex;

by sex;

run;

ods tagsets.excelxp

file='ex18.xls';

58

Multiple worksheets with BY-Groups

proc print data=classsex;

by sex;

run;

ods tagsets.excelxp close;

59

Multiple worksheets with BY-Groups

One sheet per BY-group. Sheet labels aren't very good.

60

Multiple worksheets with PROC REPORT

proc report data=sashelp.class

nofs missing;

column sex name age

weight height;

define sex / order;

break after sex / page;

run;

61

Multiple worksheets with PROC REPORT

Different and perhaps more unsatisfactory sheet labels.

62

Multiple Sheet Titles

• You may have noticed that the sheet titles

weren't particularly satisfactory. This is a

topic of ongoing debate, and I expect

improvements in future releases.

• I usually run a separate proc step for each

BY value using a WHERE clause, and

specify the sheet_name option.

• This works for me because I have data

sets with a small number of known values

for my groups. It might not work for you.

63

An Alternative Way To Set Titles

• I created a modified version of the

ExcelXP tagset which obtains the sheet

titles from a macro variable. I then use

PROC REPORT to set the macro variable

whenever it creates a new page.

• I haven't included it here, but I will put in

the file I mail out.

• Not supported by SAS, not supported by

me.

I'm discussing this with SAS, and for the time being will not send it out.

64

Other Options

• There are numerous other options.

Explaining them would make me run over

my time limit Look at the documentation,

and read the ODS community forum found
through support.sas.com.

65

Mailing The Results

• I mail the results to myself if I am running

SAS under MVS (the same thing would

apply if I were running under Unix). This

saves me from having to do an FTP.

66

Mailing The Results

filename email email

attach=("ex19.xls")

to='jfh@alumni.stanford.org'

from='jfh@alumni.stanford.org'

subject='Excel test ';

data _null_;

file email;

put 'Results are attached.';

run;

Another option is to save the workbook with an XLT (Excel Template) extension.

This will force the recipient to specify a file name in order to save the file after
making changes, and this might encourage them to save it in native Excel format

instead of XML.

67

Mailing The Results

68

Further Documentation

• http://support.sas.com/rnd/base/topics/

odsmarkup/excelxp_demo.html

• Contains some good examples, and

covers options I didn't discuss.

69

Further Documentation

• http://support.sas.com/rnd/base/topics/

odsmarkup/

• http://support.sas.com/rnd/base/topics/

odsmarkup/excelxp_demo.html

• Many SUGI papers can be found at
http://www.lexjansen.com/sugi/index.htm

